Exam. Code : 103205
 Subject Code :
 1203

B.A./B.Sc. $5^{\text {th }}$ Semester
 MATHEMATICS
 Paper-II
 (Number Theory)

Time Allowed-3 Hours]
[Maximum Marks-50
Note :-Attempt five questions in all selecting at least two questions from each Section.

SECTION-A
I. (a) If $4 x-y$ is a multiple of 3 , show that $4 x^{2}+7 x y-2 y^{2}$ is divisible by 9 . 5
(b) Show that the product of m consecutive integers is divisible by m .
II. (a) Show that if x and y are odd integers, then $16 \mid\left(x^{4}+y^{4}-2\right)$.
(b) If a, b are any two integers, not both zero, and m is a positive integer, prove that $\operatorname{gcd}(\mathrm{ma}, \mathrm{mb})=\mathrm{m} \cdot \operatorname{gcd}(\mathrm{a}, \mathrm{b})$.
III. (a) Find all integers x, y such that $147 \mathrm{x}+258 \mathrm{y}=369$.
(b) For any prime $\mathrm{p}>3$, prove that $\mathrm{p}^{2}-1$ is divisible by 24 .
IV. (a) If $\mathrm{a} \equiv \mathrm{b}$ (modm) and $\mathrm{c} \equiv \mathrm{d}$ (modm), prove that $a+c \equiv(b+d)$ modm and $a c \equiv b d(\operatorname{modm}) . \quad 5$
(b) Show that any positive integer of the form $3 \mathrm{~K}+2$ has a prime factor of the form $3 \mathrm{~K}+2$.
V. (a) Show that for every prime $p>5$, either $p^{2}-1$ or $\mathrm{p}^{2}+1$ is divisible by 10 .5
(b) Solve $140 x \equiv 133(\bmod 301)$. 5

SECTION-B

VI. (a) Find the least positive integer which when divided by $5,6,7$ gives remainder $3,1,4$ respectively. 5
(b) If g.c.d. $(\mathrm{a}, 133)=$ g.c.d. $(\mathrm{b}, 133)=1$, prove that $a^{18} \equiv b^{18}(\bmod 133)$. 5
VII. (a) Show that 19 is a prime using converse of Wilson's theorem.
(b) Find remainder when $\lfloor 15$ is divided by 17.5
VIII.(a) For even integer n, prove that $\phi(2 n)=2 \phi(n)$ where $\phi(n)$ is Euler's phi-function.
(b) If $\mathrm{n}+2, \mathrm{n}$ both are primes, then show that $\phi(n+2)=\phi(n)+2$.
IX. (a) Show that ${ }^{560} \equiv 1(\bmod 561)$ if g.c.d. $(a, 561)=1$, however 561 is not a prime.
(b) Find n such that $\phi(n)=97$.
X. (a) If x and y are real numbers, prove that :
$[x]+[y] \leq[x+y]$.
(b) Find a positive integer n such that:
$\mu(n)+\mu(n+1)+\mu(n+2)=3$.
272(2118)/DAG-7546
2
5400

